Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
J Control Release ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723671

RESUMEN

Vaccination is essential for preventing and controlling infectious diseases, along with reducing mortality. Developing safe and versatile adjuvants to enhance humoral and cellular immune responses to vaccines remains a key challenge in vaccine development. Here, we designed hierarchical mesoporous MOF-801 (HM801) using a Cocamidopropyl betaine (CAPB) and a Pluronics F127 in an aqueous phase system. Meanwhile, we synthesized a novel SARS-CoV-2 nanovaccine (R@M@HM801) with a high loading capacity for both the STING agonist (MSA-2) and the Delta receptor binding domain (Delta-RBD) antigen. R@M@HM801 enhanced MSA-2 and RBD utilization and effectively co-delivered MSA-2 and RBD antigens to antigen-presenting cells in the draining lymph nodes, thereby promoting the activation of both T and B cells. Lymphocyte single-cell analysis showed that R@M@HM801 stimulated robust CD11b+CD4+ T cells, CXCR5+CD4+ T follicular helper (Tfh), and durable CD4+CD44+CD62L-, CD8+CD44+CD62L- effector memory T cell (TEM) immune responses, and promoted the proliferative activation of CD26+ B cells in vivo. Meanwhile, R@M@HM801 induced stronger specific antibodies and neutralization of pseudovirus against Delta compared to the RBD + MAS-2 and RBD + MAS-2 + Alum vaccines. Our study demonstrated the efficacy of a hierarchical mesoporous HM801 and its potential immune activation mechanism in enhancing adaptive immune responses against viruses and other diseases.

3.
Heliyon ; 10(9): e29960, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694107

RESUMEN

To accurately predict sequence data with seasonal characteristics, we combine data restart technology and fractional order accumulation into a novel seasonal grey model (FSGM (1,1, α)). The particle swarm optimization (PSO) algorithm is used to solve the fractional order and background value coefficients of the model, and the effectiveness of FSGM (1,1, α) is verified using three cases. Finally, we use FSGM (1,1, α) to predict quarterly electricity generation in Beijing and Henan Province and quarterly petroleum coke production in China from 2023 to 2027. The research results indicate that, first, FSGM (1,1, α) is reasonable and effective and has the ability to accurately capture the dynamic trend of seasonal data. Second, compared with the grey model (GM (1,1)), seasonal grey model (SGM (1,1)), data grouping grey model (DGGM (1,1)), data grouping seasonal model (DGSM (1,1)), and data grouping seasonal time model (DGSTM (1,1)), which have seasonal characteristics, FSGM (1,1, α) can better fit the original data, achieve higher prediction accuracy, and perform better. Third, from 2023 to 2027, it is predicted that there will be no significant change in Beijing's electricity generation, and the current stable trend will be maintained. Both the power generation in Henan Province and the petroleum coke production in China will steadily increase to a certain extent, with obvious seasonal cyclical fluctuations. Notably, the power generation and petroleum coke production in Henan Province in the fourth quarter of 2027 will increase by 11.50 % and 10.93 %, respectively, compared to those in the fourth quarter of 2023.

4.
Inflammation ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700791

RESUMEN

Periodontitis, characterized by progressive alveolar bone destruction, leads to the loss of attachment and stability of the affected teeth. Macrophages, especially the proinflammatory M1 subtype, are key in periodontitis pathogenesis, driving the disease's inflammatory and destructive processes. Despite existing insight into their involvement, comprehensive understanding of the underlying molecular mechanisms remains limited. TRPV1 is a non-selective cation channel protein and is known to regulate cellular function and homeostasis in macrophages. Our research objective was to investigate the impact of TRPV1 on the proinflammatory attributes of M1 macrophages in periodontal tissues, exploring potential mechanistic pathways. A mouse model of periodontitis was established using Porphyromonas gingivalis inoculation and ligature application around the maxillary second molar. Immunohistological analysis showed a significant reduction in macrophage TRPV1 expression in periodontitis-induced mice. Treatment with capsaicin, a TRPV1 agonist, was observed to effectively elevate TRPV1 expression in these macrophages. Furthermore, micro-computed tomography analysis revealed a marked decrease in alveolar bone resorption in the capsaicin -treated group, compared with vehicle and healthy control groups. Our in vitro findings show that capsaicin treatment successfully attenuated LPS-induced TNF-α and IL-6 production in macrophages, mediated through NRF2 activation, consequently reducing intracellular ROS levels. These findings suggest that TRPV1 agonists, through modulating M1 macrophage activity and up-regulating TRPV1, could be a novel therapeutic approach in periodontal disease management.

5.
Vet Sci ; 11(4)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38668450

RESUMEN

This study aimed to identify active miRNA editing sites during adipose development in Ningxiang pigs and analyze their characteristics and functions. Based on small RNA-seq data from the subcutaneous adipose tissues of Ningxiang pigs at four stages-30 days (piglet), 90 days (nursery), 150 days (early fattening), and 210 days (late fattening)-we constructed a developmental map of miRNA editing in the adipose tissues of Ningxiang pigs. A total of 505 miRNA editing sites were identified using the revised pipeline, with C-to-U editing types being the most prevalent, followed by U-to-C, A-to-G, and G-to-U. Importantly, these four types of miRNA editing exhibited base preferences. The number of editing sites showed obvious differences among age groups, with the highest occurrence of miRNA editing events observed at 90 days of age and the lowest at 150 days of age. A total of nine miRNA editing sites were identified in the miRNA seed region, with significant differences in editing levels (p < 0.05) located in ssc-miR-23a, ssc-miR-27a, ssc-miR-30b-5p, ssc-miR-15a, ssc-miR-497, ssc-miR-15b, and ssc-miR-425-5p, respectively. Target gene prediction and KEGG enrichment analyses indicated that the editing of miR-497 might potentially regulate fat deposition by inhibiting adipose synthesis via influencing target binding. These results provide new insights into the regulatory mechanism of pig fat deposition.

6.
Medicine (Baltimore) ; 103(15): e37766, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608093

RESUMEN

Low-density lipoprotein cholesterol (LDL-C) is a crucial marker of cardiovascular system damage. In the Chinese population, the estimation of LDL-C concentration by Friedewald, Martin-Hopkins or Sampson equations is not accurate. The aim of this study was to develop a group of new equations for calculating LDL-C concentration using machine learning techniques and to evaluate their efficacy. A total of 182,901 patient samples were collected with standard lipid panel measurements. These samples were collated and randomly divided into a training set and a test set. In the training set, a new equation was constructed using polynomial ridge-regression and compared to the Friedewald, Martin/Hopkins and extended Martin/Hopkins, or Sampson equations in the test set. Subsequently, an additional set of 17,285 patient samples were collected to evaluate the performance of the new equation in clinical practice. The new equation, a ternary cubic equation, was accurate and easy to use, with a goodness-of-fit R2 of 0.9815 and an uncertainty MSE of 37.4250 on the testing set. The difference between the calculated value by the new equation and the measured value of LDL-C was small (0.0424 ±â€…5.1161 vs Friedewald equation: -13.3647 ±â€…17.9198, vs Martin/Hopkins and extended Martin/Hopkins equation: -6.4737 ±â€…8.1036, vs Sampson equation: -8.9252 ±â€…12.6522, P < .001). It could accurately calculate LDL-C concentration even at high triglyceride and low LDL-C. Furthermore, the new equation could also precisely calculate LDL-C concentration in actual clinical use (R2 = 0.9780, MSE = 24.8482). The new equation developed in this study can accurately calculate LDL-C concentration within the full concentration range of triglyceride and LDL-C, and can serve as a supplement to the direct determination of LDL-C concentration for the prevention, treatment, evaluation, and monitoring of atherosclerotic diseases, compared to the Friedewald, Martin/Hopkins and extended Martin/Hopkins, or Sampson equations.


Asunto(s)
Pueblo Asiatico , Suplementos Dietéticos , Humanos , LDL-Colesterol , Aprendizaje Automático , Triglicéridos
8.
Brain Sci ; 14(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672048

RESUMEN

BACKGROUND: Ischemic stroke (IS) is one of the leading causes of death and disability worldwide. The narrow therapeutic window (within 4.5 h) and severe hemorrhagic potential limits therapeutic efficacy of recombinant tissue type plasminogen activator (rt-PA) intravenous thrombolysis for patients. Xingnao Kaiqiao (XNKQ) acupuncture is an integral part of traditional Chinese medicine, specifically designed to address acute ischemic stroke by targeting key acupoints such as Shuigou (GV26) and Neiguan (PC6). In this study, we explored the therapeutic potential of XNKQ acupuncture in extending the time window for thrombolysis and interrogated the molecular mechanisms responsible for this effect. METHODS: The effect of extending the thrombolysis window by acupuncture was evaluated via TTC staining, neuronal score evaluation, hemorrhagic transformation assay, and H&E staining. RNA sequencing (RNA-seq) technology was performed to identify the therapeutic targets and intervention mechanisms of acupuncture. Evans blue staining and transmission electron microscopy were used to assess blood-brain barrier (BBB) integrity. Immunofluorescence staining and co-immunoprecipitation were performed to evaluate the level of autophagy and apoptosis and validate their interactions with BBB endothelial cells. RESULTS: Acupuncture alleviated infarction and neurological deficits and extended the thrombolysis window to 6 h. The RNA-seq revealed 16 potential therapeutic predictors for acupuncture intervention, which related to suppressing inflammation and restoring the function of BBB and blood vessels. Furthermore, acupuncture suppressed BBB leakage and preserved tight junction protein expression. The protective effect was associated with regulation of the autophagy-apoptosis balance in BBB endothelial cells. Acupuncture intervention dissociated the Beclin1/Bcl-2 complex, thereby promoting autophagy and reducing apoptosis. CONCLUSION: XNKQ acupuncture could serve as an adjunctive therapy for rt-PA thrombolysis, aiming to extend the therapeutic time window and mitigate ischemia-reperfusion injury. Acupuncture suppressed BBB disruption by regulating the autophagy-apoptosis balance, which in turn extended the therapeutic window of rt-PA in IS. These findings provide a rationale for further exploration of acupuncture as a complementary candidate co-administered with rt-PA.

9.
Pathol Res Pract ; 257: 155312, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663177

RESUMEN

Current treatments for orthopaedic illnesses frequently result in poor prognosis, treatment failure, numerous relapses, and other unpleasant outcomes that have a significant impact on patients' quality of life. Cell-free therapy has emerged as one of the most promising options in recent decades for improving the status quo. As a result, using exosomes produced from various cells to modulate ferroptosis has been proposed as a therapeutic method for the condition. Exosomes are extracellular vesicles that secrete various bioactive chemicals that influence disease treatment and play a role in the genesis and progression of orthopaedic illnesses. Ferroptosis is a recently defined kind of controlled cell death typified by large iron ion buildup and lipid peroxidation. An increasing number of studies indicate that ferroptosis plays a significant role in orthopaedic illnesses. Exosomes, as intercellular information transfer channels, have been found to play a significant role in the regulation of ferroptosis processes. Furthermore, accumulating research suggests that exosomes can influence the course of many diseases by regulating ferroptosis in injured cells. In order to better understand the processes by which exosomes govern ferroptosis in the therapy of orthopaedic illnesses. This review discusses the biogenesis, secretion, and uptake of exosomes, as well as the mechanisms of ferroptosis and exosomes in the therapy of orthopaedic illnesses. It focuses on recent research advances and exosome mechanisms in regulating iron death for the therapy of orthopaedic illnesses. The present state of review conducted both domestically and internationally is elucidated and anticipated as a viable avenue for future therapy in the field of orthopaedics.


Asunto(s)
Exosomas , Ferroptosis , Ferroptosis/fisiología , Humanos , Exosomas/metabolismo , Animales , Hierro/metabolismo
10.
Nat Commun ; 15(1): 2708, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548720

RESUMEN

Spatial proteomics elucidates cellular biochemical changes with unprecedented topological level. Imaging mass cytometry (IMC) is a high-dimensional single-cell resolution platform for targeted spatial proteomics. However, the precision of subsequent clinical analysis is constrained by imaging noise and resolution. Here, we propose SpiDe-Sr, a super-resolution network embedded with a denoising module for IMC spatial resolution enhancement. SpiDe-Sr effectively resists noise and improves resolution by 4 times. We demonstrate SpiDe-Sr respectively with cells, mouse and human tissues, resulting 18.95%/27.27%/21.16% increase in peak signal-to-noise ratio and 15.95%/31.63%/15.52% increase in cell extraction accuracy. We further apply SpiDe-Sr to study the tumor microenvironment of a 20-patient clinical breast cancer cohort with 269,556 single cells, and discover the invasion of Gram-negative bacteria is positively correlated with carcinogenesis markers and negatively correlated with immunological markers. Additionally, SpiDe-Sr is also compatible with fluorescence microscopy imaging, suggesting SpiDe-Sr an alternative tool for microscopy image super-resolution.


Asunto(s)
Neoplasias de la Mama , Proteómica , Humanos , Animales , Ratones , Femenino , Diagnóstico por Imagen , Relación Señal-Ruido , Neoplasias de la Mama/diagnóstico por imagen , Análisis por Conglomerados , Procesamiento de Imagen Asistido por Computador/métodos , Microambiente Tumoral
11.
Mater Horiz ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506727

RESUMEN

The oxygen diffusion rate in hafnia (HfO2)-based resistive memory plays a pivotal role in enabling nonvolatile data retention. However, the information retention times obtained in HfO2 resistive memory devices are many times higher than the expected values obtained from oxygen diffusion measurements in HfO2 materials. In this study, we resolve this discrepancy by conducting oxygen isotope tracer diffusion measurements in amorphous hafnia (a-HfO2) thin films. Our results show that the oxygen tracer diffusion in amorphous HfO2 films is orders of magnitude lower than that of previous measurements on monoclinic hafnia (m-HfO2) pellets. Moreover, oxygen tracer diffusion is much lower in denser a-HfO2 films deposited by atomic layer deposition (ALD) than in less dense a-HfO2 films deposited by sputtering. The ALD films yield similar oxygen diffusion times as experimentally measured device retention times, reconciling this discrepancy between oxygen diffusion and retention time measurements. More broadly, our work shows how processing conditions can be used to control oxygen transport characteristics in amorphous materials without long-range crystal order.

12.
BMC Musculoskelet Disord ; 25(1): 208, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459524

RESUMEN

PURPOSE: To compare the postoperative rehabilitation of femoral neck fractures treated with robot-assisted nailing and freehand nailing. METHODS: We systematically searched the PubMed, EMBASE, Cochrane, China National Knowledge Infrastructure(CNKI), WanFang database, China Science and Technology Journal Database (VIP) and Web of Science databases to identify potentially eligible articles. Indispensable data such as the year of publication, country, study type, robot type, age, number of patients, sex distribution, study design, and outcome indicators were extracted. The outcome indicators of interest included healing rate, length of healing time, Harris score, operation time, frequency of X-ray fluoroscopy, frequency of guide pin insertion, and intraoperative blood loss. RevMan 5.4.1 was used for the meta-analysis. RESULTS: Fourteen studies with 908 participants were included in this meta-analysis. The results showed that in terms of healing rate (SMD = 2.75, 95% CI, 1.03 to 7.32, P = 0.04) and Harris score (SMD = 2.27, 95% CI, 0.79 to 3.75, P = 0.003), robot-assisted screw placement technique scores were higher than the traditional freehand technique. Additionally, operative time (SMD = -12.72, 95% CI, -19.74 to -5.70, P = 0.0004), healing time (SMD = -13.63, 95% CI, -20.18 to -7.08, P < 0.0001), frequency of X-ray fluoroscopy (SMD = - 13.64, 95% CI, - 18.32 to - 8.95, P < 0.00001), frequency of guide pin insertion (SMD = - 7.95, 95% CI, - 10.13 to - 5.76, P < 0.00001), and intraoperative blood loss (SMD = - 17.33, 95% CI, - 23.66 to - 11.00, P < 0.00001) were lower for patients who underwent robotic-assisted screw placement than those for patients who underwent the conventional freehand technique. CONCLUSION: Compared to the freehand nailing technique, robot-assisted nailing helps improve postoperative healing rates in patients with femoral neck fractures; shortens healing times; better restores hip function; reduces the number of intraoperative fluoroscopies, guides pin placements; reduces intraoperative bleeding; and increases perioperative safety.


Asunto(s)
Fracturas del Cuello Femoral , Procedimientos Quirúrgicos Robotizados , Humanos , Pérdida de Sangre Quirúrgica , Tornillos Óseos , Fracturas del Cuello Femoral/rehabilitación , Fracturas del Cuello Femoral/cirugía , Estudios Retrospectivos , Procedimientos Quirúrgicos Robotizados/métodos , Resultado del Tratamiento
13.
Front Microbiol ; 15: 1330880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505550

RESUMEN

Due to the misuse of antibiotics, there is an increasing emergence and spread of multidrug-resistant (MDR) bacteria, leading to a human health crisis. To address clinical antibiotic resistance and prevent/control pathogenic microorganisms, the development of novel antibiotics is essential. This also offers a new approach to discovering valuable actinobacterial flora capable of producing natural bioactive products. In this study, we employed bioinformatics and macro-genome sequencing to collect 15 soil samples from three different locations in the Karamay Gobi region. First, we assessed the diversity of microorganisms in soil samples from different locations, analyzing the content of bacteria, archaea, actinomycetes, and fungi. The biodiversity of soil samples from outside the Gobi was found to be higher than that of soil samples from within and in the center of the Gobi. Second, through microbial interaction network analysis, we identified actinomycetes as the dominant group in the system. We have identified the top four antibiotic genes, such as Ecol_fabG_TRC, Efac_liaR_DAP, tetA (58), and macB, by CARD. These genes are associated with peptide antibiotics, disinfecting agents and antiseptics, tetracycline antibiotics, and macrolide antibiotics. In addition, we also obtained 40 other antibiotic-related genes through CARD alignment. Through in-depth analysis of desert soil samples, we identified several unstudied microbial species belonging to different families, including Erythrobacteriaceae, Solirubrobacterales, Thermoleophilaceae, Gaiellaceae, Nocardioidaceae, Actinomycetia, Egibacteraceae, and Acidimicrobiales. These species have the capability to produce peptide antibiotics, macrolide antibiotics, and tetracycline antibiotics, as well as disinfectants and preservatives. This study provides valuable theoretical support for future in-depth research.

14.
J. physiol. biochem ; 80(1): 189-204, Feb. 2024. ilus, graf
Artículo en Inglés | IBECS | ID: ibc-229950

RESUMEN

Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling. (AU)


Asunto(s)
Exosomas , Cicatrización de Heridas , Proliferación Celular
15.
J. physiol. biochem ; 80(1): 189-204, Feb. 2024. ilus, graf
Artículo en Inglés | IBECS | ID: ibc-EMG-576

RESUMEN

Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling. (AU)


Asunto(s)
Exosomas , Cicatrización de Heridas , Proliferación Celular
16.
Mol Carcinog ; 63(5): 897-911, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353358

RESUMEN

Increasing evidence has demonstrated that glutaminase (GLS) as a key mitochondrial enzyme plays a pivotal role in glutaminolysis, which widely participates in glutamine metabolism serving as main energy sources and building blocks for tumor growth. However, the roles and molecular mechanisms of GLS in esophageal squamous cell carcinoma (ESCC) remains unknown. Here, we found that GLS was highly expressed in ESCC tissues and cells. GLS inhibitor CB-839 significantly suppressed cell proliferation, colony formation, migration and invasion of ESCC cells, whereas GLS overexpression displayed the opposite effects. In addition, CB-839 markedly suppressed glucose consumption and lactate production, coupled with the downregulation of glycolysis-related proteins HK2, PFKM, PKM2 and LDHA, whereas GLS overexpression exhibited the adverse results. In vivo animal experiment revealed that CB-839 dramatically suppressed tumor growth, whereas GLS overexpression promoted tumor growth in ESCC cells xenografted nude mice. Mechanistically, GLS was localized in mitochondria of ESCC cells, which interacted with PDK1 protein. CB-839 attenuated the interaction of GLS and PDK1 in ESCC cells by suppressing PDK1 expression, which further evoked the downregulation of p-PDHA1 (s293), however, GLS overexpression markedly enhanced the level of p-PDHA1 (s293). These findings suggest that interaction of GLS with PDK1 accelerates the glycolysis of ESCC cells by inactivating PDH enzyme, and thus targeting GLS may be a novel therapeutic approach for ESCC patients.


Asunto(s)
Bencenoacetamidas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Glutaminasa , Glucólisis , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Tiadiazoles , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Glutaminasa/genética , Glutaminasa/metabolismo , Glucólisis/genética , Ratones Desnudos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo
17.
Int J Nanomedicine ; 19: 1451-1467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371456

RESUMEN

Background: Ischemic stroke (IS) causes tragic death and disability worldwide. However, effective therapeutic interventions are finite. After IS, blood-brain barrier (BBB) integrity is disrupted, resulting in deteriorating neurological function. As a novel therapeutic, extracellular vesicles (EVs) have shown ideal restorative effects on BBB integrity post-stroke; however, the definite mechanisms remain ambiguous. In the present study, we investigated the curative effects and the mechanisms of EVs derived from bone marrow mesenchymal stem cells and brain endothelial cells (BMSC-EVs and BEC-EVs) on BBB integrity after acute IS. Methods: EVs were isolated from BMSCs and BECs, and we investigated the therapeutic effect in vitro oxygen-glucose deprivation (OGD) insulted BECs model and in vivo rat middle cerebral artery occlusion (MCAo) model. The cell monolayer leakage, tight junction expression, and metalloproteinase (MMP) activity were evaluated, and rat brain infarct volume and neurological function were also analyzed. Results: The administration of two kinds of EVs not only enhanced ZO-1 and Occludin expressions but also reduced the permeability and the activity of MMP-2/9 in OGD-insulted BECs. The amelioration of the cerebral infarction, BBB leakage, neurological function deficits, and the increasing ZO-1 and Occludin levels, as well as MMP activity inhibition was observed in MCAo rats. Additionally, the increased levels of Caveolin-1, CD147, vascular endothelial growth factor receptor 2 (VEGFR2), and vascular endothelial growth factor A (VEGFA) in isolated brain microvessels were downregulated after EVs treatment. In vitro, the employment of Caveolin-1 and CD147 siRNA partly suppressed the expressions of VEGFR2, VEGFA and MMP-2/9 activity and reduced the leakage of OGD insulted BECs and enhanced ZO-1 and Occludin expressions. Conclusion: Our study firstly demonstrates that BEC and BMSC-EVs administrations maintain BBB integrity via the suppression of Caveolin-1/CD147/VEGFR2/MMP pathway after IS, and the efficacy of BMSC-EVs is superior to that of BEC-EVs.


Asunto(s)
Isquemia Encefálica , Vesículas Extracelulares , Accidente Cerebrovascular Isquémico , Ratas , Animales , Barrera Hematoencefálica , Factor A de Crecimiento Endotelial Vascular/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Caveolina 1/metabolismo , Ocludina/metabolismo , Células Endoteliales , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Infarto de la Arteria Cerebral Media , Isquemia Encefálica/metabolismo , Glucosa/metabolismo , Vesículas Extracelulares/metabolismo
18.
Bioorg Chem ; 144: 107160, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301426

RESUMEN

Metabolism is reprogrammed in a variety of cancer cells to ensure their rapid proliferation. Cancer cells prefer to utilize glycolysis to produce energy as well as to provide large amounts of precursors for their division. In this process, cancer cells inhibit the activity of pyruvate dehydrogenase complex (PDC) by upregulating the expression of pyruvate dehydrogenase kinases (PDKs). Inhibiting the activity of PDKs in cancer cells can effectively block this metabolic transition in cancer cells, while also activating mitochondrial oxidative metabolism and promoting apoptosis of cancer cells. To this day, the study of PDKs inhibitors has become one of the research hotspots in the field of medicinal chemistry. Novel structures targeting PDKs are constantly being discovered, and some inhibitors have entered the clinical research stage. Here, we reviewed the research progress of PDKs inhibitors in recent years and classified them according to the PDKs binding sites they acted on, aiming to summarize the structural characteristics of inhibitors acting on different binding sites and explore their clinical application value. Finally, the shortcomings of some PDKs inhibitors and the further development direction of PDKs inhibitors are discussed.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Complejo Piruvato Deshidrogenasa , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Glucólisis , Sitios de Unión
19.
J Agric Food Chem ; 72(7): 3683-3694, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334101

RESUMEN

Bouquet is a fascinating wine characteristic that serves as an indicator of wine quality, developing during the aging process. The multifunctional monoterpenol oxidase VvCYP76F14 in wine grapes sequentially catalyzes three reactions to produce (E)-8-carboxylinalool, a crucial precursor for wine bouquet. Previous studies indicated that the activity of VvCYP76F14 derived from different wine grape varieties did not correlate with the amino acid sequence differences. In this study, 54 wine grape varieties were categorized into neutral, aromatic, and full-bodied types based on the sequence differences of VvCYP76F14, closely correlated with the content of wine lactone precursors. Computer modeling and molecular docking analysis of the full-bodied CYP76F14 revealed 17, 19, and 18 amino acid residues in the VvCYP76F14-linalool, VvCYP76F14-(E)-8-hydroxylinalool, and VvCYP76F14-(E)-8-oxolinalool complexes, respectively. Site-directed mutagenesis and in vitro enzyme activity analysis confirmed the substitutions of the key amino acid residues in neutral and aromatic varieties. Notably, the D299 mutation of VvCYP76F14 resulted in the complete loss of (E)-8-oxolinalool and (E)-8-carboxylinalool activities, aligning with the undetectable levels of (E)-8-oxolinalool and (E)-8-carboxylinalool in "Yantai 2-3-37", which harbors the D299T substitution. Favorably, VvCYP76F14 could serve as a cost-effective fingerprint marker for screening superior hybrid offspring with the desired levels of wine lactone precursors.


Asunto(s)
Vitis , Vino , Vitis/química , Vino/análisis , Simulación del Acoplamiento Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Lactonas/metabolismo , Mutagénesis Sitio-Dirigida , Aminoácidos/metabolismo
20.
Cell Cycle ; 23(1): 1-14, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234233

RESUMEN

Rheumatoid arthritis (RA) is an inflammatory disease which causes severe pain and disability. Neutrophils play essential roles in the onset and progression of RA; thus, inhibition of neutrophil activation is becoming a popular therapeutic strategy. Dehydroandrographolide has provided satisfactory outcomes in inflammatory diseases; however, its therapeutic effects and mechanism in RA are not fully understood. Leukocyte mono-immunoglobulin-like receptor 3 (LMIR3) is a negative regulator highly expressed in neutrophils. To determine whether dehydroandrographolide negatively regulated neutrophils activation via LMIR3, cytokines release and collagen-induced arthritis (CIA) rats were used in vitro and in vivo. Biacore, molecular docking analysis and molecular dynamics simulation were performed to prove the target of dehydroandrographolide. Moreover, the downstream signaling pathways of LMIR3 activation were analyzed by western blotting. Results showed that oral dehydroandrographolide administration of 2 mg/kg/day to CIA rats attenuated synovitis and bone and cartilage damage after the 28-day intervention, revealed using HE sections and micro-CT. Dehydroandrographolide significantly inhibited cytokine release and chemotaxis of LPS/TNF-α-activated neutrophils in vitro. Dehydroandrographolide inhibited neutrophils activation via binding to LMIR3. Moreover, dehydroandrographolide up-regulated the phosphorylation of SHP-1 and SHP-2, which are the essential kinases in the LMIR3 signaling pathways. This study revealed that dehydroandrographolide attenuated collagen-induced arthritis by suppressing neutrophil activation via LMIR3.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Diterpenos , Ratas , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Activación Neutrófila , Simulación del Acoplamiento Molecular , Artritis Reumatoide/tratamiento farmacológico , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...